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SYNTHESIS OF OPTICALLY ACTIVE MEVINIC ACID SUBUNITS VIA ACETAL INITIATED/VINYLSILANE
TERMINATED POLYENE CYCLIZATIONS.
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Abstract: Efficient routes to optically active octahydronaphthalenol mevinic acid subunits via
vinylsilane-mediated polyene cyclizations initiated by trimethylenedioxy acetals are detailed.
Enantioselective alkynone reductions and Ireland-Claisen rearrangements serve to establish and
transfer absolute stereochemistry.

We previously reported2 a synthetic route to the octahydronaphthalenol subunit of dihydrocom-
pactin (1) featuring an acylium ion initiated/vinylsilane terminated polyene cyc]ization.3 For
this strategy to be generally applicable to the synthesis of the biologically important mevinic
acids,4 several limitations of the prototype sequence required modification. Specifically, we
sought (1) a more efficient construction of the polyene cyclization precursor in (2) optically
active form with (3) a more effective initiating group. The two sequences described herein,
accommodating primitive and more elaborate hydroxy lactone side chain precursors, successfully
demonstrate these modifications.
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As summarized antithetically in eq 1, a 1,3-dioxolane acetal initiators replaced the previ-

ously utilizedz acid chloride functionality. The polyene cyclization substrate 2 was thus
improved to a stable, isolable substance at the correct oxidation level relative to the hydro-
naphthalenol portion of 1. Furthermore, we expected 2 to cyclize upon treatment with milder
Lewis acids than those required (SbC]s, SbFS) for the acid chloride initiated cyc]ization.6
Control over the relative stereochemistries at the indicated (*) centers in 2 was to be accom-
plished via Ireland-Claisen rearrangement7 of ester 3, transferring absolute stereogenicity from
the allylic carbinol derived from a Mid]and8 or Noyori9 reduction of the alkynone 4.

The synthesis of the optically active octahydronaphthalenol subunit 12 with a simple
methoxypropyl side chain is detailed in Scheme 1. Treatment of 1—methoxy—4—pentyne10 with n-Buli
in tetrahydrofuran (THF) at 0°C followed by addition at -78°C of &-valerolactone gave in 93%
yield the achiral acetylenic ketone 5. Protection of the hydroxyl group as the methoxymethyl
ether and asymmetric reduction of the ketone using Midland's method as modified by Br‘own8 (2
equiv S-Alpine Borane,ll, neat, 25°C, 18 h) gave the (S)-propargylic alcohol in enantiomeric
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OMe  (a) MOMC], i-PryNEL, CH,Cl,. (b) (S)-Alpine Borane, 25°C.
(¢) Red-Al, E,0, 25°C; CHyCH,COCI, pyndine, CH,Cl,, 25°C.
(d) LDA,THF, -78°C: Me,SiCl, E;N, -78—25°C; H,0"; CH,;N,,
Et,0. (¢) DIBAL-H, CH,Cl,, -23°C. (f) (COCI),, DMSO, CH,Cly;
EtN, -55°C. (g) CBry, PhyP, CHyCly, 0°C. (h) conc. HC1, MeOH,
60-65°C. (i) n-BuLi, THF, -78 == 25°C; H,0. (j) n-Bu,SnH, AIBN,
N 100-105°C. (x) n-BuLi, THF, -78 =-23°C; Me;SiOTf, THF, -78°C.
H () HO(CH,);OH, PPTS, PhH, reflux. (m) TiCl,, CH,Cl,, -78°C.
12 (n) Piperidinium acetate, PhH, reflux.

excesses ranging from 77—82%.12 Reduction with Red—All3

to the E-allylic alcohol and esterifi-
cation with propionyl chloride gave the Claisen rearrangement substrate 6 in 96% overall yield
from 5. Rearrangement7 of the intermediate E-trimethylsilylketene acetal obtained by kinetic
enolate generation and in situ trapping with ch]orotrimethy1si1ane14 gave the ester 7 as a 13:1
diastereomeric mixture.l Conversion of the ester to the aldehyde, Corey-Fuchs16 homologation,
and cleavage of the MOM-ether gave the acetylenic alcohol 8, in 82% overall yield. The E-
vinylsilane 9 was obtained by the cis-addition of tributyltin hydride to the alkyne, trans-
metallation (4 equiv n-Buli, -78° » -23° - -78°C, 1.5 h),and trapping with trimethylsiiyl
triflate.17 The cyclization substrate, acetal 10, was produced in a straightforward manner by
Swern oxidation18 followed by treatment with 1,3-propanediol/cat. pyridinium p-toluene-
sulfonate19 in refluxing benzene. Attempted cyclizations under conditions commonly used by
Johnson20 in acetal-initiated polyene cyclizations (SnC14 in benzene, nitromethane, or dichlor-
romethane) all failed for substrate 10. However, cyclization occurred rapidly and cleanly
when a 0.02 M solution of 10 was treated with 1.5 equiv of TiCl4 in CH2C12 at -78°C for 5 min-
utes, producing three products (lla, 11b and 11c) in a ratio of 17:10:73 in 91% yield. The lat-
ter two products were not separable until after cleaving the remnants of the acetal initiator by
Swern oxidation18 and t}—elimination.z1 The octahydronaphthalenol 12 thus produced [81%, mp
59-63°C, [a]p?® + 104.3° (¢ 1.75, CHC1;)] was structurally identical (by i R, 3¢ MR, IR,
MS) to the racemic material previously synthesized in our 1abs.2 Analysis of the (R)-(+)-MTPA
ester derivative22 of 12 showed it to have an enantiomeric excess of 78%. An overall yield of
19% from l-methoxy-4-pentyne underscores the efficiency of this route.

A related sequence (Scheme II) afforded a more elaborate dihydrocompactin precursor 22,
wherein the entire carbon skeleton is assembled with all stereochemical details. The enan-
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Ph  (a) OsO,, pyridine, NalO,, THF-H,O (1:1). (b) CBry, PPh;, CH,Cly, 0°C. (c) n-BuLi, THF, -78°C;
n-BuLi, THF, -78°C; § -valerolactone. (d) PCC, 3A sieves, Celite, CH,Cl,, 25°C. (e) HO(CH,),0H;
PPTS, PhH, reflux. (f) BINAL-H, THF, -100 =-78°C. (g) Red-Al, Et,0, 25°C. (h) CH3CH,COCl,
pyridine, CH,Cl,, 25°C. (i) LDA, THF, -78°C; t-BuMe,SiCl, HMPA, -78 = 25°C. (j) DIBAL-H,
CH,Cl,, -78°C. (k) (COCI),, DMSO, -55°C; Et3N. (1) Me;SiCHBry, CrCly, THF, ultrasound, 55-60°C.
(m) TiCly, CH,Cl,, -78°C. (n) Piperidinium acetate, PhH, reflux.
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23 24

was subjected to Lemieux—Johnson oxidation
16 in 88% overall
yield. Treatment of 14 with 2.1 equiv of n-BuLi at -78°C gave after aqueous work-up a quantita-

tiomerically pure hydroxy lactone synthon 13
followed by homologation to the dibromo olefin 14 via the Corey-Fuchs procedure

tive yield of the terminal alkyne. Regeneration of the acetylide (1.1 equiv n-BuLi, THF, -78°C,
1 h) and trapping with 6-valerolactone gave in 95% yield the alkynone 15. The trimethylenedioxy
acetal cyclization initiator was introduced in a direct manner to give 16, which proved to be a
poor substrate for the Alpine Borane reduction,8 in contrast to the substrate in Scheme I.
Fortunately, the use of Noyori's (S)-BINAL-H reagent9 gave the desired product 16 in high yield
(87%) and diastereoselectivity (95%). Conversion to the trans allylic alcohol with Red-A1l3 and
acylation with propionyl chloride gave the Ireland-Claisen rearrangement7 substrate 18 in 94%
overall yield. Considerable problems with C-silylation of the ester enolate in the rearrange-
ment to 19 were overcome by adding HMPA to the enolate (1.2 mL/mmo1), followed by 4 equiv of t-
butyldimethylsilyl chloride in THF. The product ester 13 was formed as a 12:1 mixture of
diastereomers in 81% yield.

While this work was in progress, Takai report.edz5 a one step homologation of aldehydes to E-
alkenylsilanes utilizing a gem-dichromium reagent derived from dibromo(trimethylsilyl)methane.
If applicabie to the a-chiral aldehyde derived from 19, this method would save three steps over
that used to establish the vinylsilane moiety in 9 (Scheme I). Unfortunately, treatment of the
derived aldehyde with 2 equiv of dibromo(trimethylsilyl)methane and 8 equiv of chromium(II)
chloride in THF at 25°C for 24 h as described by Takai25 caused substantial epimerization at the
indicated stereocenter. However, the reaction proceeded cleanly and gave exclusively the E-
vinylsilane terminus. Seeking to minimize the epimerization problem by speeding up this hetero-
geneous reaction, we found that the reaction time could be reduced to 50 minutes by immersing
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the reaction flask in an ultrasonic cleaning bath at 55-60°C. Cyclization substrate 20 was

thus produced in 90% overall yield with a lessened extent of epimerization.
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The vinylsilane-mediated bicyclization was effected by adding a 0.01 M solution of acetal 20
in CHZC]2 to a 0.04 M solution of Ti014 (4 equiv) in CHZC12 at -78°C. After 5 minutes the reac-
tion was quenched with MeOH; standard work-up and chromatography gave in 74% yield the trans-—
fused bicyclic 21, contaminated with a small amount of inseparable minor isomer(s). Cleavage of
the hydroxypropyl group as previously described21 gave in 88% overall yield the dihydrocompactin
precursor 22. The conversion of 13 to 22 required fifteen synthetic steps and proceeded in 26%
overall yie1d.27
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