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Abstract: Efficient routes to optically active octahydronaphthalenol mevinic acid subunits via 
vinylsilane-mediated polyene cyclizations ini t iated by trimethylenedioxy acetals are detailed. 
Enantioselective alkynone reductions and Ireland-Claisen rearrangements serve to establish and 
transfer absolute stereochemistry. 

We previously reported 2 a synthetic route to the octahydronaphthalenol subunit of dihydrocom- 

pactin (I) featuring an acylium ion init iated/vinylsi lane terminated polyene cyclization. 3 For 

this strategy to be generally applicable to the synthesis of the biologically important mevinic 
4 acids, several limitations of the prototype sequence required modification. Specifically, we 

sought (1) a more eff ic ient construction of the polyene cyclization precursor in (2) optical ly 

active form with (3) a more effective in i t ia t ing group. The two sequences described herein, 

accommodating primitive and more elaborate hydroxy lactone side chain precursors, successfully 

demonstrate these modifications. 
HO yo 

o 

H 1 

[ •  R 

-, SiMe 3 

' ~ ..L ~. > (1) 

, O 

H 3 4 

As summarized anti thet ical ly in eq I, a 1,3-dioxolane acetal in i t ia tor  5 replaced the previ- 

ously uti l ized 2 acid chloride functionality. The polyene cyclization substrate 2 was thus 

improved to a stable, isolable substance at the correct oxidation level relative to the hydro- 

naphthalenol portion of 1. Furthermore, we expected 2 to cyclize upon treatment with milder 

Lewis acids than those required (SbCl5, SbF5) for the acid chloride init iated cyclization. 6 

Control over the relative stereochemistries at the indicated (*) centers in 2 was to be accom- 

plished via Ireland-Claisen rearrangement 7 of ester 2, transferring absolute stereogenicity from 

the a l l y l i c  carbinol derived from a Midland 8 or Noyori 9 reduction of the alkynone 4. 

The synthesis of the optically active octahydronaphthalenol subunit 12 with a simple 

methoxypropyl side chain is detailed in Scheme I. Treatment of 1-methoxy-4-pentyne 10 with n-BuLi 

in tetrahydrofuran (THF) at O°C followed by addition at -78°C of 6-valerolactone gave in 93% 

yield the achiral acetylenic ketone 5. Protection of the hydroxyl group as the methoxymethyl 

ether and asymmetric reduction of the ketone using Midland's method as modified by Brown 8 (2 

equiv S-Alpine Borane, 11 neat 25°C, 18 h) gave the (S)-propargylic alcohol in enantiomeric 
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(a) MOMCI, i-Pr2NEt, CH2CI2. Co) (S)-Alpine Borane, 25°C. 
(c) Red.A1, Et20, 25°C; CH3CH2COCI, pyridine, CH2CI 2, 25°C. 
(d) LDA,THF, -78°C; Me3SiCI, Et3N, -78~25°C; H3 O+; CH2N2, 
Et20. (e) DIBAL-H, CH2C12, -23 C. (t") (COCI) 2, DMSO, CH2C12; 
Et3S , -55°C. (g) CBr,, PhaP, CH2C12, 0°C. (h) conc. HCI: M e()H,, 
60-65°C. (i) n-BaLi, THF, -78 ~ 25°C; H20. (j) n-~u3anrt, Alnt,,, 
100-105°C. (2.<) n-B uLi, THF, -78 ~ -23°C; Me3S iOTf, THF, -78°C. 
(1) HO(CHz)3OH, PPTS, Phil, reflux. (m) TiCI4, CH2C12,-78°C. 
(n) Piperidinium acetate, Phil, reflux. 

excesses ranging from 77-82%,. 12 Reduction with Red-A113 to the E-a l l y l i c  alcohol and es te r i f i -  

cation with propionyl chloride gave the Claisen rearrangement substrate 6 in 96% overall y ield 

from 5. Rearrangement 7 of the intermediate _E-trimethylsilylketene acetal obtained by kinetic 
m 

enolate generation and in situ trapping with chlorotrimethylsilane 14 gave the ester Z as a 13:1 

diastereomeric mixture. I--5- Conversion of the ester to the aldehyde, Corey-Fuchs 16 homologation, 

and cleavage of the MOM-ether gave the acetylenic alcohol 8, in 82% overall y ie ld.  The E- 

vinylsi lane 9 was obtained by the cis-addit ion of t r i b u t y l t i n  hydride to the alkyne, trans- 

metallation (4 equiv n-BuLi, -78 ° ~ -23 ° ~ -78 °C, 1.5 h),and trapping with t r imethy ls i ly l  
M 

t r i f l a t e .  17 The cycl izat ion substrate, acetal 1__00, was produced in a straightforward manner by 

Swern oxidation 18 followed by treatment with 1,3-propanediol/cat. pyridinium p-toluene- 

sulfonate 19 in ref luxing benzene. Attempted cyclizations under conditions commonly used by 

Johnson 20 in aceta l - in i t ia ted polyene cyclizations (SnCl 4 in benzene, nitromethane, or dichlor- 

romethane) al l  fai led for substrate 10. However, cycl ization occurred rapidly and cleanly 

when a 0.02 M solution of 10 was treated with 1.5 equiv of TiCl 4 in CH2CI 2 at -78°C for 5 min- 

utes, producing three products (11a, 11b and 11c) in a ratio of 17:10:73 in 91% yie ld.  The la t -  

ter two products were not separable unt i l  after cleaving the remnants of the acetai i n i t i a to r  by 

Swern oxidation 18 and ~-elimination. 21 The octahydronaphthalenol 1__22 thus produced [81%, mp 

59-63°C, [~]D 23 + 104.3 ° (c 1.75, CHCI3)] was structural ly identical (by 1H NMR, 13C NMR, IR, 
2 

MS) to the racemic material previously synthesized in our labs. Analysis of the (R)-(+)-MTPA 

ester derivative 22 of 12 showed i t  to have an enantiomeric excess of 78%. An overall y ield of 
m 

19% from 1-methoxy-4-pentyne underscores the eff iciency of this route. 

A related sequence (Scheme I f) afforded a more elaborate dihydrocompactin precursor 2__22, 

wherein the entire carbon skeleton is assembled with al l  stereochemical details. The enan- 
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(a) OsO4, pyridine, NaIO 4, THF-H20 (1:1). (b) CBr4, PPh 3, CH2C12, 0°C. (c) n-BuLl, THF, -78°C; 
n-BuLi, THF, -78°C; 6 -valerolactone. (d) PCC, 3A sieves, Celite, CH2C12, 25°C. (e) HO(CH2)aOH~ 
PPTS, Phil, reflux. (f) BINAL-H, THF, -100 -----78°C. (g) Red-A1, Et20, 25°C. (h) CH3CH2COCI, 
pyddine, CH2CI2, 2~°C. (i) LDA, THF, -78°C; t-BuMe2SiC1, HMPA, -78 ~ 25°C. (j) DIBAL-H, 
CH2a2, -78°C. (k) (COCl)2 , DMSO, -55°C; EhN. (1) Me3SiCHBr 2, CrCl2, THF, ultrasound, 55-60°C. 
(m) TiC14, CH2C12, -78°C. (n) Piperidinium acetate, PitH, reflux. 

t iomerical ly pure hydroxy lactone synthon 1__3323 was subjected to Lemieux-Johnson oxidation 24 

followed by homologation to the dibromo olef in 1_44 via the Corey-Fuchs procedure 16 in 88% overall 

y ie ld.  Treatment of 14 with 2.1 equiv of n-BuLi at -78°C gave after aqueous work-up a quantita- 

t ive yield of the terminal alkyne. Regeneration of the acetylide (1.1 equiv ~-BuLi, THF, -78°C, 

1 h) and trapping with 6-valerolactone gave in 95% yield the alkynone 15. The trimethylenedioxy 

acetal cyclization i n i t i a t o r  was introduced in a direct manner to give 16, which proved to be a 

poor substrate for the Alpine Borane reduction, 8 in contrast to the substrate in Scheme I. 

Fortunately, the use of Noyori's (S)-BINAL-H reagent 9 gave the desired product 16 in high yield 

(87%) and diastereoselectivi ty (95%). Conversion to the trans a l l y l i c  alcohol with Red-A113 and 

acylation with propionyl chloride gave the Ireland-Claisen rearrangement 7 substrate 1_88 in 94% 

overall y ie ld.  Considerable problems with C-si ly lat ion of the ester enolate in the rearrange- 

ment to 19 were overcome by adding HMPA to the enolate (1.2 mL/mmol), followed by 4 equiv of ~- 

butyldimethylsi lyl  chloride in THF. The product ester 1_99 was formed as a 12:1 mixture of 

diastereomers in 81% yie ld.  

While this work was in progress, Takai reported 25 a one step homologation of aldehydes to E- 

alkenylsilanes u t i l i z i n g  a gem-dichromium reagent derived from dlbromo(trimethylsilyl)methane. 

I f  applicable to the ~-chiral aldehyde derived from 1__99, this method would save three steps over 

that used to establish the vinylsi lane moiety in 9 (Scheme I ) .  Unfortunately, treatment of the 

derived aldehyde with 2 equiv of dibromo(trimethylsilyl)methane and 8 equiv of chromium(II) 

chloride in THF at 25°C for 24 h as described by Takai 25 caused substantial epimerization at the 

indicated stereocenter. However, the reaction proceeded cleanly and gave exclusively the E- 

vinylsi lane terminus. Seeking to minimize the epimerization problem by speeding up this hetero- 

geneous reaction, we found that the reaction time could be reduced to 50 minutes by immersing 

the reaction flask in an ultrasonic cleaning bath at 55-60°C. 26 Cyclization substrate 20 was 

thus produced in 90% overall yield with a lessened extent of epimerization. 
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The vinylsilane-mediated bicyclization was effected by adding a 0.01M solution of acetal 2_00 

in CH2CI 2 to a 0.04 M solution of TiCl 4 (4 equiv) in CH2CI 2 at -78°C. After 5 minutes the reac- 

tion was quenched with MeOH; standard work-up and chromatography gave in 74% yield the trans- 

fused bicyclic 2_11, contaminated with a small amount of inseparable minor isomer(s). Cleavage of 

the hydroxypropyl group as previously described 21 gave in 88% overall yield the dihydrocompactin 

precursor 22. The conversion of 13 to 22 required f i f teen synthetic steps and proceeded in 26% 
overall yield. 27 
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